Limit multiplicities for principal congruence subgroups of \ ${\rm GL}({n})\$ and \${\rm SL}({n})\$

نویسندگان

  • Tobias Finis
  • Erez Lapid
  • Werner Müller
  • TOBIAS FINIS
  • EREZ LAPID
  • WERNER MÜLLER
چکیده

We study the limiting behavior of the discrete spectra associated to the principal congruence subgroups of a reductive group over a number field. While this problem is well understood in the cocompact case (i.e., when the group is anisotropic modulo the center), we treat groups of unbounded rank. For the groups GL(n) and SL(n) we show that the suitably normalized spectra converge to the Plancherel measure (the limit multiplicity property). For general reductive groups we obtain a substantial reduction of the problem. Our main tool is the recent refinement of the spectral side of Arthur’s trace formula obtained in [Finis, Lapid, and Müller, Ann. of Math. (2) 174(1) (2011), 173–195; Finis and Lapid, Ann. of Math. (2) 174(1) (2011), 197–223], which allows us to show that for GL(n) and SL(n) the contribution of the continuous spectrum is negligible in the limit.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Galois representations from the cohomology of SL(3, Z)

Ash's research was partially supported by NSF Grant DMS-8919696. Conjecturally, any “algebraic” automorphic representation on GL(n) should have an n-dimensional Galois representation attached. Many examples of algebraic automorphic representations come from the cohomology overC of congruence subgroups of GL(n;Z). On the other hand, the first author has conjectured that for any Hecke eigenclass ...

متن کامل

RESOLUTIONS OF THE STEINBERG MODULE FOR GL(n)

We give several resolutions of the Steinberg representation Stn for the general linear group over a principal ideal domain, in particular over Z. We compare them, and use these results to prove that the computations in [AGM11] are definitive. In particular, in [AGM11] we use two complexes to compute certain cohomology groups of congruence subgroups of SL(4,Z). One complex is based on Voronoi’s ...

متن کامل

Sums of Products of Congruence Classes and of Arithmetic Progressions

Consider the congruence class Rm(a) = {a + im : i ∈ Z} and the infinite arithmetic progression Pm(a) = {a+im : i ∈ N0}. For positive integers a, b, c, d,m the sum of products set Rm(a)Rm(b)+Rm(c)Rm(d) consists of all integers of the form (a+im)(b+jm)+(c+km)(d+lm) for some i, j, k, l ∈ Z}. It is proved that if gcd(a, b, c, d,m) = 1, then Rm(a)Rm(b) + Rm(c)Rm(d) is equal to the congruence class R...

متن کامل

Cohomology of congruence subgroups of SL(4,Z) II

In a previous paper [Avner Ash, Paul E. Gunnells, Mark McConnell, Cohomology of congruence subgroups of SL4(Z), J. Number Theory 94 (2002) 181–212] we computed cohomology groups H (Γ0(N),C), where Γ0(N) is a certain congruence subgroup of SL(4,Z), for a range of levels N . In this note we update this earlier work by extending the range of levels and describe cuspidal cohomology classes and addi...

متن کامل

Endoscopy and the cohomology of $GL(n)$

Let $G = {rm Res}_{F/mathbb{Q}}(GL_n)$ where $F$ is a number field‎. ‎Let $S^G_{K_f}$ denote an ad`elic locally symmetric space for some level structure $K_f.$ Let ${mathcal M}_{mu,{mathbb C}}$ be an algebraic irreducible representation of $G({mathbb R})$ and we let $widetilde{mathcal{M}}_{mu,{mathbb C}}$ denote the associated sheaf on $S^G_{K_f}.$ The aim of this paper is to classify the data ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014